Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The usefulness of pharmacokinetic parameters for glioma grading has been reported based on the perfusion data from parts of entire-tumor volumes. However, the perfusion values may not reflect the entire-tumor characteristics. Our aim was to investigate the feasibility of glioma grading by using histogram analyses of pharmacokinetic parameters including the volume transfer constant, extravascular extracellular space volume per unit volume of tissue, and blood plasma volume per unit volume of tissue from T1-weighted dynamic contrast-enhanced perfusion MR imaging. MATERIALS AND METHODS Twenty-eight patients (14 men, 14 women; mean age, 49.75 years; age range, 25-72 years) with histopathologically confirmed gliomas (World Health Organization grade II, n = 7; grade III, n = 8; grade IV, n = 13) were examined before surgery or biopsy with conventional MR imaging and T1-weighted dynamic contrast-enhanced perfusion MR imaging at 3T. Volume transfer constant, extravascular extracellular space volume per unit volume of tissue, and blood plasma volume per unit volume of tissue were calculated from the entire-tumor volume. Histogram analyses from these parameters were correlated with glioma grades. The parameters with the best percentile from cumulative histograms were identified by analysis of the area under the curve of the receiver operating characteristic analysis and were compared by using multivariable stepwise logistic regression analysis for distinguishing high- from low-grade gliomas. RESULTS All parametric values increased with increasing glioma grade. There were significant differences among the 3 grades in all parameters (P < .01). For the differentiation of high- and low-grade gliomas, the highest area under the curve values were found at the 98th percentile of the volume transfer constant (area under the curve, 0.912; cutoff value, 0.277), the 90th percentile of extravascular extracellular space volume per unit volume of tissue (area under the curve, 0.939; cutoff value, 19.70), and the 84th percentile of blood plasma volume per unit volume of tissue (area under the curve, 0.769; cutoff value, 11.71). The 98th percentile volume transfer constant value was the only variable that could be used to independently differentiate high- and low-grade gliomas in multivariable stepwise logistic regression analysis. CONCLUSIONS Histogram analysis of pharmacokinetic parameters from whole-tumor volume data can be a useful method for glioma grading. The 98th percentile value of the volume transfer constant was the most significant measure.
منابع مشابه
Quantification of blood-brain-barrier permeability dysregulation and inflammatory activity in MS lesions by dynamic-contrast enhanced MR imaging
Objective: Measurement of blood-brain permeability dysfunction in active and chronic MS lesions with T1-weighted dynamic contrast-enhanced MRI to show variation in inflammatory activity Background: blood-brain-barrier perfusion characterization impaired in MS as some studies have shown recently buta comparison between perfusion parameters in contrast-enhanced and non-enhanced lesions not have ...
متن کاملDynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors
Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...
متن کاملThe role of relative cerebral blood volume obtained from Perfusion Weighted Imaging-MRI in glioma tumor grading before surgery
Introduction: Glioma is the most common type of brain malignancy among adults. Treatment for this type of tumor involves surgery, radiotherapy, and in higher grades, including chemotherapy. The precise grading of the tumor is critical for treatment planning and prognosis determining. Considering the possibility of problems such as errors in tissue sampling during surgery, as we...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملEffect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies
Introduction: Pharmacokinetic (PK) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely applied in tumor diagnosis and treatment evaluation. Precision analysis of the estimated PK parameters is essential when they are used as a measure for therapy evaluation or treatment planning. In this study, the accuracy of PK parameters in brain DCE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2014